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ABSTRACT

A new clustering method called CLASSY, which
alternates maximum likelihood iterative techniques
for estimating the parameters cf a mixture distribu-
tion with an adaptive procedure for splitting, com-
bining, and eliminating tk.e resuitant components of
the mixture, has been developed. The adaptive pro-
cedure is based on maximizing the fit of a mixture of
multivariate normal distributions to the observed
data using its first through fourth central moments.
The method generates estimates of the number of
multivariate normal components in the mixture and
the proportion, mean vector, and covariance matrix
for each component. .

This paper describes the mathematical model
which is the basis for CLASSY and outlines the ac-
tual operation of the algorithm as currently imple-
mented. Results of applving CLASSY to real and
simulated Landsat data are presented and compared
with results generated by the lterative Self-Organiz-
ing Clustering System (ISOCLS) algorithm, a deriva-
tive of the ISODATA algorithm, on the same data
sets.

INTRODUCTION

The Large Area Crop Inventory Experiment
{LACIE) is dependent on clustering for the deter-
mination of spectral classes within a Landsat image
of a sample segment (ref. 1). Curreatly, the lterative
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Self-Organizing Clustering System (ISOCLS) is used
for this purpose (refs. 2 and 3). ISOCLS is basically a
variation of the k-means or ISODATA algorithm of
Ball and Hall (refs. 4 and 5). Although this algorithm
may be interpreted as a simplified maximum likeli-
hood procedure, it is fundamentally a heunistic
algorithm for breaking a data set into fairly
homogeneous compact clusters.

A new clustering algorithm called CLASSY,
which approximates the mixture distribution of a
given data set such as Landsat data with a linear com-
bination of normal distributions, has been
developed. CLASSY operates by interleaving max-
imum likelihood iterative estimation with an adap-
tive procedure for splitting, combining, and eliminat-
ing the resultant components of the mixture density
(or clusters). The adaptive procedure is based on
maximizing the fit of a mixture of multivariate nor-
mal distributions to the observed data using its first
through fourth central moments. This procedure
allows new components (or clusters) 1o be created if

"any existing one appears to be multimodal or other-
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wise nonnormal. CLASSY produces an estimate of
the proportion, mean vector, and covariance matrix
for each co:aponent in the multivariate normal mix-
ture. It differs from standard maximum likelihood
procedures in that it also generates an estimate of the
number of compenents in the mixture.

The CLASSY algorithm is currently implemented -
on an IBM 370-148 computer. It is written in Foriran
IV language and currently accepts as input Landsat
imagery on magnetic tape. Both line printer and mag-
netic tape output are generated by the program.

The following section of this paper describes the
mathematical model that is the basis for CLASSY
and provides a brief description of the actual opera-
tion of the algorithm. The section entitied “*Results™
contains comparisons of the performances of
CLASSY and ISOCLS on simulated data and on ac-
tual Landsat data used in LACIE. Finally, these
results are evaluated and conclusions are developed.




-~

MATHEMATICAL DESCRIPTION

Assumptions and Problem Definition

The fundamental mathematical assumption un-
derlying CLASSY is that the data may be usefully ap-
proximated by a mixture of multivariate normal den-
sities. That is, if x is an observation vector and pis its
probability density function, then

m

p(x|mmy) = 2 ap;(x|wE) ()

i=1

where g; is the a priori probability of occurrence of
class i; p,(xlu,.}'.,) is the multivariate normal prob-
ability density function for class i with mean vector
#;and covariance matrix I mis the total number of
classes; ,, is the full set of parameters (i.e., {qy,...,
ﬂm,“l, coo s Pl }'.l. ‘e .2,,,}).

Given a set of statistically independent, unlabeled
sample vectors [x }, the likelihood function may be
formed in the followmg manner:

L ({5} mnn)= ﬁ [?’fn: ap;( %|#eE; )](2)

i=l

where Nis the total number of samples.

So far, the assumptions and equations parallel the
usual maximum likelihood development. CLASSY
makes the additional assumption that each value of
the parameters m and #,, occurs with an a priori
probability distribution A (m,m,,). This Bayesian for-
mulation of the problem is taken to avoid the

_degenerate situation of increasing the likelihood by

generating more and more clusters with smaller and
smaller values of a. The practical limit of this proc-
ess is that each class will be associated with only one
data point.

The objective of CLASSY, then, is to determine
the discrete parameter m and the coatinuous
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parameter veclor w, 5o us to maximize the following
function:

L ‘xI} I""m' ) = A (m.lm ) n[}j} ap, {.'llu":i )]
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The values of m and w,_ which maximize equation

(3) specify a set of distributions that will be called

clusters. Of course, A( mr ) must be choseu so that
it satisfies the normalization constraint

1f (mu dm, =1 (4)
m=

The upper limit on m is infinity since the possibility
of generating an infinite number of clusters must be
considered (in theory).

Typically, in the absence of other information, the
a priori probabilities may be chosen as

‘ 31"_,IC‘ n
i=1

0, otherwise

A(mmy,) = &)

where C; = Cis a constant containing normalization
factors over m,, space, 8 is an overall normalization
constant, and R, is a finite region of =, space corre-
sponding to allowable values for the parameters.
Using this simple form for 4(m,,) in equation (4),
the following is obtained.

S [ scman, = i(c j; dﬂl) ©

ms=} m . m=]
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where ¥ < 1, then the sum in equation (6) will con-
verge and 8 = 1 — y provides the proper normaliza-
tion. Thus, larger valucs of y provide a priori bias in
favor of more clusters, whereas smaller values pro-
vide bias in favor of fewer clusters.

In the current version of CLASSY, the authors
have been using y = e~! and approximating the R,
integral of dm; by 24 This represents a crude ap-
proach to the problem of determining the form of
A(m,). However, in practice, the overall technique
to be described in the next section has proven not to
be sensitive to reasonable changes in the value of C.

With the form for A(m,r,) assumed in equation
(3), the function to be maximized becomes

er<)m)E

TSV >’H*
) mr, np[_ (I~l‘i)r§i |(ll' -u")]{ A eR_
0, otherwise (7)

where dis the dimensionality of the observations x y

Solution Procedure

Many approaches may be taken to maximize
equation (3). The approach chosen in CLASSY is to
interleave maximum likelihood iteration (designed
t0 maximize L((x }.m.r,) with respect to the con-
tinuous parameter vector ) with a discrete split,
join, and combine process (desxgned 10 maximize
L({x,;},mm,) with respect to the discrete parameter
m). Although the theoretical convergence properties
of this procedure have not been examined, it is ex-
pected that, by alternating these two techniques,.
values of m and ¥, corresponding to at least a local
maximum of L({x}mm,) will be determined.

Because the splitting and combining technigues oper-
ate around cach cxisting cluster and the statistics for
hypotheses concerning different numbers of ¢lusters
are maintaincd scparately, it has been observed that
the final local maximum will often be global.

Necessary conditions for a maximum of
L({x }mm, ) with respect to =, assuming a fixed
num‘)er of classes m, are well known (see Duda and
Hart (ref. 6) and Wolfe (ref. 7)) and are given by the
following equations:

ap; X |1;-=;)

p(ilxk.nm) == 8
/=Z| aﬁ(xklpi.zi)
- 1 Y . Y
- q —-ﬁkgp ( 'l"k”'mi )
N
L (ena) %
B N (10)
27 (1Peta) -
N T
Bt (e ()

N
£ (i)
an

where p(i|x,, 7, is the posterior probability of class
i, given the kith sample vector and the values of the
parameters, and a;, u,, and I,i=1,...,m, are the
elementsof w,

Numerous techniques have been proposed for ob-
taining a solution to this set of coupled, simultaneous
nonlinear equations. Specific methods have been
suggested by Quirein and Trichel (ref. 8), Day (ref.

'9). Hasselblad (ref. 10), and Wolfe (ref. 7), among

others. CLASSY uses direct functional iteration for
equations (10) and (11); that is, use of estimates for

673




p,and £ on the right side to produce improved esti-
matces on the left side.

Estimates for the a priori class probabilities a, are
computed using an iteration scheme which. has
proved to converge more rapidly than simple func.
tional iteration using equation {9). The scheme uscd
is specified by the following equastion, which is
derived in the appendix.

S 12
4 N _ql_ :1_ (12)
p‘>q‘P P,<Q,'p
where
= oy ()
"l
) Ma,p i (%:|%) g

4=2 (r‘ii—;) P (%) % )

FA b}

N = the total number of observations

This equation is used by substituting old values of a,
#;,and X, i=1,...,m, ontheright to obtain an up-
dated estimate for a;on the left. The summations are
taken over all values of x, such that P> g;orp; < g,
Initially, each new data point X; is used to update
the parameter values using equations (8) through
(12). This procedure allows rapid evolvement of the
parameters as new data points are processed. A
danger lies in the fact that the data are considered se-
quentially. If significant correlation is present in the
data, updating the parameters with each new data
point could theoretically cause the maximum likeli-
hood equations 1o converge very slowly or to under-
go cyclic drifts. This problem has been found to be
particularly severe in Landsat data, which exhibit
high correlation within fields. To reduce the effects
of this correlation, the data are initially scrambied in
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a random fashion. Using scrambled data and updat.
ing the parumeter values with cach new data point,
the authors have observed that the number of sam-

ples (N) required for initial convergence is on the'

order of a few hundred, even for large data sets.
Following initial convergence, the parameters are up-
dated only after a complete pass has been made
through the data. This second type of iteration allows
a fine tuning of the parameter values and is not sub-
ject to problems refated to data correlation. The con-
ditions under which the second mode of parameter

. iteration is entered are discussed later in this section.

The same iteration scheme used to update the
parameters is aiso used to accumulate third- and
fourth-order central moments. That is, current
values of the parameters are used with each new data
point to form the new terms to be accumulated for
estimating the moments. The fundamental equations
for the estimates of the third- and fourth-order mo-
meants are generalizations of equations (10) and (11)
and are given as

N
1 - e =
s,‘,?q =W 2 Fi5ipiaP ( ‘1"i"'m) - (13)

i i:l
and
ki 19
Kiipg = Tv;izi XX itjp lqp( i xjom ) (14)
where.x = (x k “lk)
Xy = the kth component of the jth sample
vector
i = the current estimate for the kth com-
ponent of the mean vector of ciuster /
and where
N
W, =;z:1 p (ilx,.,nm ) 1%5)

The parameter W;is defined as the weight for cluster
i and may be considered as the number of points




assigned to a cluster on a fractional probabilistic
basis; S!') is a three-dimensional “skewness™ tensor,
and K is a four-dimensional “kurtosis™ tensor. To
reduce the number of parameters to be estimated and
stored, traces of these tensors are formed using the
inverse of the estimated sample covariance matrix
for cluster i (X,) to obtain

N
1 —— f == -1 . .
~ Kk(? = Wz ikx”( xiTEi ‘xi )p(:lxi. ﬂm)(17)
where k,/= 1,2,...,d and
xT = [?n . -""}d] )

During the initial iteration mode, when parameter
values are changing with each data point, the esti-
mates for

sD = (s0,..,s0)
and

K(f) = ( K;? )

for each cluster i are only approximately correct. The
second mode of iteration produces a more accurate
estimate of these statistics. As shall be seen, the esti-
mates of S{') and K(/) are used in the maximization
of the likelihood with respect to the discrete
parameter m. :
The optimization of L({x,}.m,m,) with respect to
the discrete parameter m takes the form of generating
hypotheses concerning the number of clusters and

« -

the subsequent testing of these hypotheses using a
likclihood ratio test. At certain points in the process
of maximum hkelihood iteration, it is possible to
genecrate a hypothesis concerning the fit of a given
cluster to the data; namely, cither that the data are
better represented by two clusters rather than one (a
split hypothesis) or that the data are better repre-
sented by combining the given cluster with another
cluster (a join hypothesis). Each cluster is checked to
determine whether either a split or a join hypothesis
seems reasonable when the weight for that cluster as
defined in equation (15) exceeds a threshold. At this
same time, a portion of the old data, which have been
accumulated using less accurate parameter values, is
subtracted from the appropriate sum for each of the
parameters given in equations (8) through (11). The
weight threshold is initially set at 200 and increases
each time it is exceeded. This procedure allows an in-
itial fit to the major clusters in the data and a subse-
quent development of more detailed cluster struc-
ture.

The generation of a split hypothesis is governed
by comparing scalar measures of multivariate skew-
ness and kurtosis for each cluster to thresholds
derived from the appropriate distribution for these
measures computed under the assumption of a
multivariate normal distribution. The scalar
measures of multivariate skewness and kurtosis are
contractions of the skewness vector ${/) and the kur-
tosis matrix K!') with respect to the inverse of the
estimated covariance matrix for cluster i, 3;71. These
measures are given by

T
52 = s z-1s® (18)

k= Tr (x@z 1) (19)

(k°)2=Tr(Km2°1K(")2“) -ﬁi (20)
i i i d

Here, k;is the trace of the normalized kurtosis matrix
for cluster i and (k)2 is the trace-free component of
the square of k.

If any one of these three statistics given by equa-
tions (18) to (20) exceeds its threshold value, the hy-
pothesis is formed that the ith cluster may be split
into two parts. The parameters for each of the two
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new componcent clusters are estimated by minimiz-
ing the squared diffcrences between the obscrved
covariance matrix, the skewness vector, and the kur-
tosis matrix and the corresponding quanuities for the
mixture distribution composed of the two new nor-
mal distributions. The proportion and mean for the
mixture composcd of the subclusters are defined to
be exactly equal to the corresponding quantities for
the parent cluster. That is, if a,and u, are the current
estimates of proportion and mean for cluster / and
g s a, K, .and K, are the correqunqing initial
values of the subcluster parameters, it is required

that

a =g, +a 21
(] il iy ( )
and
a.u +a pu
ity i,
a *g
1 2

Thus, ths difference in subcluster proportions and
the difference in the subcluster mean vectors are left
as free parameters. The other free parameters are the
independsnt elements of the twe subcluster
covariance matrices. Therefore, a total of

1
i

teaes [40] gurp

parameters must be determined.

There are [d(d + 1)}/2 equations, each of which
matches the covariance matrix and kurtosis matrix
parameters for the parent cluster to the correspond-
ing parameters for the subcluster mixture. In addi-
tion, there are d equations matching the skewness
vector parameters for the parent cluster and the
subcluster mixture. This is a total of d? + 24 equa-
tions. Thus, there is one more free parameter or
unknown than there are equations and a unique sotu-
tion is not possible.

The approach taken to obtaining a solution is to

676

minimize by means of a steepest descent algonithm a
quadratic form that may be expressed as

K Kp”: v a,

where T K(), and S(are the current estimates of
the covariance matrix, the kurtosis matrix, and the
skewness vector, respectively, for cluster i; S.p. Kp.
and S, are the corresponding “pooled™ estimates
from t(;e mixture of the subclusters under the restric-
tions of equations (21) and (22): and a4, a3, and ay
are arbitrary constants. The norms are the appropri-
ate matrix and vector norms. That is, if .M, is one of
the symmetric matrices in equation (23) and
V, = §() — 8, then

s s,||’ 23)

3
« - - .
- “p O:

o= a

"M‘.”z =T (MZ7'MZY)

wll= vzt

Minimization of equation (23) under the restric-
tions of equations (21) and (22) produces estimates
for the proportions, mean vectors, and covariance
matrices which define two new multivariate normal
clusters. In the generation of a split hypothesis, the
statistics defining the multivariate normal parent
cluster are not discarded. When the maximum likeli-
hood iteration cycle is begun again, it is performed
for the previously existing clusters, including the
parent cluster, and for the two new clusters, which
may be thought of as subclusters of the parent
cluster. Thus, as split and join hypotheses are gener-
ated, a hierarchical cluster structure or cluster tree
evolves. Final decisions concerning the choice of a
parent cluster or its subclusters to represent the data
are made on the basis of likelihood ratio tests as will
be described later.

The generation of a join hypothesis is the inverse
of the split hypothesis generation procedure. That is,
if the generation of a join hypothesis for two already
existing clusters is deemed reasonable, then statistics
for a new parent cluster are calculated from the
multivariate normal mixture distribution defined by
the two clusters to be joined. The new parent cluster



is inscricd at the level of the clusters to be joined and
the clusters to be joined are moved to the next lower
level in the tree as subclusters of the new parent.

It should be noted that only clusters which have a
common parcnt are cligible to be joined. The test for
determining when a join hypothesis should be gener-
ated is designed to measure the degree of overlap be-
tween clusters having a common parent cluster. (All
the clusters at the top level of the tree are assumed to
have a common parent.) The overlap is checked by
comparing the mean vectors and the diagonal ele-
ments of the covariance matrices for two clusters. A
heuristic criterion is used to perform this check. This
criterion is given by equation (24).

wE=!ewe=!

r (i
(.l-'l) (' w,.w:'
Ry »

) =) 4% e -
T o

where W,is the current weight for cluster i and 4 and
B are arbitrary constants (currently, 4 = 0.3 and
B = 0.18). .

The first term in the numerator is a weighted dis-
tance between the mean vectors of clusters i 2nd j.
- The weighting is accomplished by an average inverse
covariance matrix for clusters i and j. The second
term in the numerator is a measure of the difference
in the diagonal elements of the two covariance
matrices. The diagonal elements rather than the full
covariance matrices are used for computational
simplicity. A more complete expression involving all
covariance terms would be In[det £3;7!]. The
denominator is designed to discriminate against
small clusters in the sense that R;; will be artificially
reduced if the weight of one cluster is small relative
to the weight of the other cluster. This factor is
designed to give large clusters an opportunity to ab-
sorb small clusters if such a join does not substan-
tially affect the statistics of the larger cluster.

The Rj;criterion is computed for each cluster hav-
ing the same parent as cluster i. If the cluster j for
which R is a minimum is less than an empiricaily
set fixed threshold, then a join hypothesis {or cluster
iand jis generated.

- Final decisions concerning the acceptance or ge-
jection of split and join hyotheses are made in terms
of likelihood ratio tests. If there are m, subclusters for

a given parent cluster 4, then the logarithm of the
likelihood rutio of the subclusters to the parent is ac-
cumulated at the same time that maximum likeli-
hood iteration is taking place. The form of this likeli-
hood ratio is given by equation (25).

m V™
sc i 7T [E a“ip (xliukl_..‘:ki)]
i=1 Lk=1

InA; = 1In ~ .
o< v ()
N |
- (m, - 1) InC+ /};f In L‘g ap ("'{""i"v”‘:)J
- lnE:,p (x,{n,.z,)] (25)

where A; is the likelihood ratio for cluster #, a;, g,
and I are the current estimates of the parameters for
cluster i; and q, and X, are the corresponding
subcluster parameters. Thi$ log likelihood ratio is
tested against a threshold computed assuming that 2
In A, is approximately distributed as an x! random
variable with dagrees of freedom equal to d+ 1. A
one-tailed test is used, and the probability of a type |
error is set at 0.01. If 2In A;exceeds the threshold set
by the test, then the statistics for the parent cluster
are eliminated and the subclusters take the pldce of
the parent cluster.

It is aiso possible that In A; may become negative,
cven though in theory this should not occur. In prac-
tice, negative values may occur because of poor in-
itial estimation of the subcluster parameters or lack
of convergence in these estimates. To avoid the ex-
pense of maintaining poor subclusters, the
subclusters afe eliminated in favor of the parent
cluster when In A; falls below a fixed negative
threshold. This threshold is set to a large negative
value to allow the subcluster statistics to converge if
they are going to converge.

One other possibility in testing the likelihood ratio
is that the subcluster statistics may actually converge
so that the mixture distribution defined by the
subcluster parameters reproduces or very nearly
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reproduccs the parent cluster distribution. In such
cascs, In A, will remain at a low value possibly
shghtly greater than oc less than zero. If this occurs,
it may be assumed that the parent cluster is the most
economical description of the data and the
subclusters may be climinated. To test for this situa-
tion, another statistic based on the accumulated
point probabilities under the parent and subcluster
hypotheses is examined. Defining

My
Py () Z;:xa"a'p (x’l“"i':"i)

where g, ., , and Z, are the current estimates of
[ { .

the parameters for the subclusters of cluster i, the

statistic computed is

N |p ( x,{ui.zi)

=1 | Pi ("il“i‘zi)

- (%) 2

+ p,.i (xj)

Equation (26) gives a crude measure of how much a
parent cluster differs from the mixture of its
subclasses. If E; becomes smaller than a fixed em-
pirically determined threshold and the log likelihood
ratio is less than a fixed small positive value, then the
subclusters are eliminated in favor of the parent
cluster.

The one remaining test in the portion of the pro-
gram that performs maximization with respect to the
number of classes is a simpie test on the proportion
a;of each cluster or subcluster. If this proportion falls
below a threshold value, currently set to 0.01, then
the cluster is eliminated, This test is used primarily
in the interest of efficiency since very small clusters
do not significantly affect the overali mixture dis-
tribution.

All the tests for the generation of hypothesized
new clusters and for the elimination of clusters or
subclusters occur at certain intervals during the proc-
ess of maximum likelihood iteration and statistics ac-
cumulation; namely, when the weight for a given
cluster has increased by a fixed amount or when a
complete pass has been made through the data since
the last tests were performed. After the tests have
been made and any resultant restructuring of the
cluster tree has taken place, E, (given by eq. (26)), K,

(26)

—

678

»

S, and \, are resct. Thus, these statistics depend
only on the data processed since the last testing of
the cluster statistics for cluster /.

The present program cycles through the data a
fixed number of times. (The number of passes
through the data is controlled by an external
paramcter.) When the desired number of passes is
complete, the program clusters the data by examin-
ing it point by point and assigning each data point to
the cluster in the cluster tree for which the prob-
ability of occurrence of this data point is the greatest.
This is the only time in the program that points are
assigned to clusters. When all the points have been
assigned, a cluster map showing the cluster symbol
for each point is printed out. The program also prints
out the final values for the parameters for each
cluster in the cluster tree.

Figure 1 is a general flow diagram for the
CLASSY program. This is not a detailed flow
diagram for the program but merely serves to sum-
marize the information given in this section in a con-
venient manner.

The initial values assumed at the beginning of the
program are as follows.

@n

DATA,PROCEDURES, AND RESULTS

To evaluate the CLASSY clustering algorithm, it
was applied to both real and simulated Landsat data.
Performance measures were defined and calculated
for each trial of the algorithm. The measures were
compared with those derived from applying the
ISOCLS algorithm to the same data. :
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FIGURE 1.—Flow diagram for the CLASSY algorithm.
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Data Sets

Two diffcrent data sets were used in the compara-
tive evaluation of CLASSY and ISOCLS. The first
was a set of Landsat acquisitions of four different
LACIE scyments. Each LACIE scgment is 196 pic-
ture elements (pixels) per line by 117 lines and cor-
responds 10 a S- by 6-nautical-mile area on the
ground. The second data set was a group of four
different simulated acquisitions of a simulated
LACIE segment. Each of these data sets is described
separately in the following paragraphs.

The four LACIE segments were selected on the
basis of the availability of ground truth at regularly
spaced pixels in the image and the provision of a
representative sampling of LACIE segments in
terms of field structure and the proportion of wheat
present. Once the segments had been chosen, the ac-
quisition that had the greatest separability, as
measured by the Bhattacharyya distance, was
selected. The Bhattacharyya distance was computed
between wheat and nonwheat classes where the class
statistics were obtained from ground-truth fields.
The segment number and location, the acquisition
date with the largest separability, and the ground-
truth percentages of wheat and small grains for each
segment are given in table 1.

TABLE l—Description of LACIE Sample Segments

Segment  Location Acquisition Ground  Ground
date truth, truth,
percent percent
wheat small
grains
1181  Kansas Mar. 10,1976 234 20
1988  Kansas Nov. 8, 1975 330 330
1961  Kansas July 18,197¢ 8.2 8.2
1965  North Dakota Aug. 8, 1976 416 470

The simulated data set consisted of four simulated
Landsat acquisitions, each 196 pixels by 117 lines.
This data set was generated by IBM for the Mission*
Planming and Analysis Division at the Johnson Space
Center (ref. 11). Each “acquisition™ was obtzined
first by specifying the mean vector and covariance
watrix for 10 different classes. The class statistics for
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cach class were specificd so as to simulate the
LACIE data for two wheat classes () and #)), two
barley classes (8) and B,), two classes of grass {G,
and G,). two stubbic classes (§; and S,), and two
classes of fallow (£, and F;). The statistics for these
classes were actually obtained from Landsat data
representing an agricultural arca in Hill County,
Montana. Once the statistics for a given class were
specified, independent samples were generated from
a four-dimensional multivariate normal distribution
having those statistics. These samples were then
placed in rectangular fields arranged over the simu-
lated segment. This process was repeated for each
class and for each of the four acquisitions. The ar-
rangement of the simulated fields over the segment
was the same for each acquisition. The pattern of the
simulated fields is given in figure 2.

Gy|By| S4{W5|S,

WqlS41S;

W,| B,

W1(S4

FIGTIRE 2.—-Distribution of classes in simulated seginent.

Evaluation Method and Procedures

CLASSY was evaluated using a comparative
analysis method in which the clustering results of
CLASSY were compared with those of ISOCLS
using the ground truth as a reference. The evaluation
procedure consisted of two steps.

1. The CLASSY and ISOCLS algorithms were ap-
plied to each segment in each data set. CLASSY was
tun for three complete iterations through all the data
in each segment. ISOCLS was run in the nearest
neighbor mode with 40 ground-truth pixels as start-



ing vectors. In this mode, ISOCLS merely assigns
pixels to thc ncarest starting vector measured in
_terms of L-1 distance rather than operating
iteratively. This mode was chosen for ISOCLS
because this was the manner in which the algorithm
was currently being used in the LACIE project.

2. The clusters in the line printer map produced
by each algorithm were analyzed by first recording
the cluster symbol and the corresponding ground-
truth label (either wheat or nonwheat) for each pixel
where ground truth was available. These results were
tabulated, so that the number of ground-truth wheat
pixels and ground-truth nonwheat pixels falling in
cach cluster was known. The clusters were then
labeled wheat or nonwheat by majority rule.

A measure of the accuracy of each clustering
algorithm in separating wheat from nonwheat (or a
measure of the overall purity of the wheat and non-
wheat clusters) was computed by estimating the
probability of correct classification (PCC) for the
labeled clusters. This probability is given by

PCC = },'3;’ (o,;o) P(O) + EP (w,lw) W) (28)
=1 =1 .

where m, is the number of clusters labeled “other™;
m, is the number of clusters labeled wheat; P(0,| 0)
is the probabhility that a nixel falls in the ith “other™
cluster, given that it is other than wheat; P(W;| W) is
the probability that a pixel falls in the ith wheat
cluster, given that it is wheat; P(W) is the a priori
probability that a pixel is wheat; and P(O) is the a
priori probability that a pixel is other than wheat.
Empirical proportions were used to estimate these
probabilities and a priori values, resulting in the
following estimate:

A ! m! mz
PCC = —— + 3N 29
N“z:; Jo E wiw (29

where Nris the total number of ground-truth pixels,
No ,ous the number of ground-truth “other™ pixels
falling in the ith “other” cluster, and NW[ w is the
number of ground-truth wheat pixels fallmg in thé
Ah wheat cluster. It is noteworthy that, to obtain an
accurzte estimate of PCC using equation (29), it is
- pecessary that several ground-truth pixels fall in each

cluster. Specifically, if there are clusters which have
only one or two ground-truth grid-intersection pixels,
the estimuate of PCC wilf be biased on the high side.

As a part of the analysis, the proportion of wheat
was also estimated for the labeled clusters and com-
pared to the ground-truth value. The equation used
for this estimate is

A 1 o2
W) =5—2 N (30)
vy &, -

where Nw is the total number of ground-truth pixels
(wheat and other) falling in the ith wheat cluster.

Estimates computed -using equations (29) and
(30) were obtained for each algorithm as applied to
both the real and simulated data sets.

Results

The results of these computations are given in ta-
bles II through XI. Tables 11, III, V, and VI compare
CLASSY and ISOCLS results for the LACIE seg-
ments examined; the corresponding results for
simulated segment data are given in tables VII
through XI. '

Table Il compares the number of clusters and the
PCC estimates for ISOCLS (PéC,) and for CLASSY
(PCC,) as a result of clustering each of the four
LACIE segments examined using both methods.
The PCC estimates for CLASSY are, on the average,
about 4 percentage points lower than those for
ISOCLS. However, since the version of ISOCLS used

TABLE Il.—Comparison of the Number of Clusters and
the Estimated Probability of Correct Classification
Using Single-Pass Segment Data

Segment ISOCLS CLASSY Pégc -
PCC;
No.of PeCl No. of PeCc
clusters clusters
1181 40 0.3410 7 0.8052 -0.0358
1988 40 .8070 8 .7661 -.0409
1961 40 9236 11 9028 -—.0208
1965 40 419 9 8774 -~ 0645
Average 40 3284 8.75 1875 —.040§
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gencrates a factor of 4 to 6 times as many clusters as
CLASSY. many of the ISOCLS clusters contain only
one or two ground-truth grid-intersection points. As
discussed in the preceding section, this means that
the PCC estimates for ISOCLS will be biased high
relative to CLASSY. In addition, ecuach ISOCLS
cluster typically contains one ground-truth point
used as a starting vector for that cluster. Since the
label of these starting vectors almaost always agrees
with the cluster label, this amounts to a further high
bias in the PCC estimates for ISOCLS. In the light of
this bias in favor of ISOCLS and the economy repre-
sented by the greatly reduced number of CLASSY
clusters, CLASSY compares very favorably to
ISOCLS.

The LACIE segments used in this study con-
tained varying amounts of wheat. The ground-truth
percentages of wheat P(}¥) and small grains P(SG)
are given in table 1II. The estimate of the proportion
of wheat computed using the ground-truth grid-inter-
section dots ﬁo( W) is also included. An estimate of
the proportion of wheat in the whole scene deter-
mined from the clusters labeled wheat can be ob-
tained using equation (30). The wheat proportion
estimates resulting from applying this equation to
the CLASSY results A.(W) and ISOCLS “results

(W) are also given in table 1ll. Comparing these
percentages to the ground-truth wheat proportions
shows that, with the exception of segment 1965, the
whneat proportion estimates are avout 4 to 6 percent
higher than the ground-truth wheat proportion
values. These slightly high estimates may be due to
the fact that, even though only wheat ground-truth
dots were used to label clusters, labeled wheat
clusters may reasonably be assumed to include some
small grains. The last column in table III shows that
‘the ISOCLS estimate was closer to the ground-truth

wheat proportion for two scgments and the CLASSY
cstimate was closer for the other two scgments.

The imagery for scgment 1965 was examined in
detail because the wheat proportion estimates for
both CLASSY and ISOCLS deviated considerably
from the ground truth and the PCC estimates jor
both algorithms were correspondingly low for this
segment. This segment contained numerous small
strip fields. Typically, small-field regions accentuate
misregistration problems, and such appears to be the
case for this segment. The misregistration of the.
ground-truth reference acquisition relative to the ac.
quisition clustered reduced PCC values and distorted

. the proportion of wheat estimates for both
algorithms.

To obtain an idea about the relative performance
of CLASSY and ISOCLS when applied to multitem-
poral data, four-channel “green” images were formed
for each segment by applying the Kauth (ref. 12)
transformation to each of four acquisitions for a
given segment and then selecting the green number
from each acquisition. (It was necessary to reduce
the 16-dimensional data to 4 dimensions since
CLASSY is limited to 4 dimensions at the present
time.) Table 1V lists the four acquisitions used for
each segment. The results of comparing the PCC
values and the wheat proportion estimates for the
two aigorithms are given in tables V and VI, respec-
tively. Comparing table V and 1able Il shows that the
PCC values for both algorithms remained about the
same for segments 1181 and 1961 and that they in-
creased significantly for segments 1988 and 1965.
The average difference between the CLASSY and
ISOCLS PCC values remained about 4 percent.
However, the CLASSY PCC equaled the ISOCLS
PCC for segment 1988, and the difference was very
small for segment 1961. The last column of table VI

TABLE lll.—Comparison of Wheat Proportion Estimates jor Labeled Clusters
Using Single-Pass Segment Data

IDy| = DI

Segment Ground truth Gmugd-lrurh I30CLS CLASSY D= D=
dosPpwy  Byw) (W) Bw —Bowy B owy = Bow)
PW)  PSG)
s 0% 02% 0333 0287 0303 053 0.069 —0.016
1938 330 330 322 397 287 067 =04 024
1961 082 .082 097 042 069 -.040 -.013 07
1965 A16 470 516 526 645 110 229 =119
Average .266 293 a J13 326 047 .061 -.021
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TABLE IV.—Acquusitions Used in Creating
Four-Channel Green Images

Segment

Acquisitions

118l Mar. 10,1976
Apr. 16,1976
May 3. 1976
July 14,1976

1988 Oct. 20,1975
May 6,1976
- - June 12,1976
. Sept. 28,1976

1961 Aug. 15,1975
June 12,1976
Aug. 23,1976
Sept. 10,1976

1965 May 11,1976
July 21,1976
Aug.8,1976
Sept. 14,1976

shows that, when the four-channe! green images
were used, the wheat proportioti estimates from the
CLASSY clusters were closer to the ground-truth
values than were the ISOCLS estimates in every case.

Tables VII and VIII are analogous to tables II and
HI, except that they give the resuits for the single-

: pass simulated data. The column labeled maximum
likelihood PCC (PCC,,) gives the overall PCC when

using standard maximum likelihood classification
where the statistics for each class were computed
from fields in the simulated image given the class
label for each field. Note that the PCC estimates for
CLASSY were higher than those for ISOCLS in two
of the four passes. In fact, on pass 2, where the sepa-
rability was greatest, the PCC for CLASSY equaled

Tu8LE V.—Comparison of the Number of Clusters and
the Estimated Probability of Correct Classification
Using the Four-Channcl Green Image Data

Segment 150CLS CLASSY péc. -
péc
No.of plc 1 No.of !’eCc
clusters clusters )
1181 0 08667 4 08000 —00667
1988 40 9357 16 9357 0
1961 40 9167 23 9097 - 0070
1965 40 2065 1) 7290 —=.0775
Average 40 1314 14 8436 -.0378

the maximum likelihood PCC. On the average, the
PCC for CLASSY was 1.4 percent higher than that
for ISOCLS.

The proportion estimate computed from the
labeled clusters is given in table VIIL. Again, the esti-
mate from CLASSY was closer to the true value in
two of the four passes. However, the average in-
dividual ISOCLS estimate was about 2 percent closer
to the true value.

The results for the simulated data using band 1
from each of the four passes are given in table IX.
Band 1 was selected arbitranily to assess the use of
multitemporal data. Note that the PCC estimate for
CLASSY was 1.0, meaning that none of the CLASSY.
clusters contained a mixture of wheat and nonwheat
grid-intersection pixels.

Using the simulated data makes it possible to
identify a cluster with a certain class in the data by
determining which class contributes the majority of
pixels to the cluster. After such an identification. the
generating statistics for the class may be compared
v:ith the cluster statistics produced by CLASSY. Ta-
ble X presents the results of such a comparison for

T4BLE VI.—Comparison of Wheat Proportion Estimates for Labeled Clusters Using
Four-Channel Green Image Data

Segment Ground truth ISOCLS  CLASSY Dy~ D, = ID{1 = 1D|
W Bwy Bwm—tw  Bowm-fw
P(W)  P(SG)
ns 024 0230 0292 0241 0.058 0.007 0.051
1988 330 3% 316 342 - 014 012 002
191 082 0% 066 069 - 016 -.013 003
1965 A6 470 625 565 209 - .149 060
Average 266 .29 325 304 059 ) 039 029
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Ta8LE VII.—Comparison of the Number of Clusters and the Estimared Probability of
Correct Classification Using Single-Pass Simulated Data

A
Pass  PCCy ISOCLS ctassy  pccy- Pl pcoy - plc, plc, - Pl
No.of PCC, Noor PCC,
clusters clusters
1 0935 40 09139 ] 0.9043 0.021 0.030 =0.0096
2 . 9% 40 9713 b 9857 01s 000 0144
3 970 40 9761 ] 9522 - .006 018 -.02)9
4 928 40 8852 ? 9187 043 009 0335
Average 955 40 9366 6.25 9402 018 014 0144

TABLE VIIl.—Comparison of the Wheat Proportion Estimates for Labeled Clusters
Using Single-Pass Simulated Data

pass  pow)  Bowy  Buw D= IDf| = ID|
. Bywy - Bowy c(W) Thow)
1 03398 03301 02536 ~0.0097 ~0.0862 —00765
2 3398 254 3541 — 0144 0143 0001
3 3398 3636 2917 0238 — 0481 —0243
‘4 3398 3256 3349 — 0144 —0049 0095
Average 3398 3361 .3086 -—.0147 -.0312 —.0228

the vass 2 simulated data, whereas table XI gives

<h of the four passes.

h the pass 2 CLASSY results, four of the five
< .uters could be clearly identified with one of the
e--eratng classes or distributions. A comparison of
"+ mean vector and covariance matrices shows a
~amaadle correspondence between the CLASSY
'+ ucs and the generating statistics. Cluster 3 was
*+ ! eqaally divided between grass 1 and grass 2.

Tes:s IX.—Probability of Correct Classification
Using Multipass Simulated Data

v socts  cLassy  ple - pl

No.of P, No.of PeC,
clusters clusters

Only the statistics for grass 1 are shown in the table.
Similarly, cluster 2 was a mixture of stubble, fallow,
and barley 2. The statistics for each of these classes
are very similar for this pass. The statistics for stub-
ble 1 are given as a representative example of that
group of clas-es.

The data from band 1 of each of the four simu-
lated passes had more separability; thus, CLASSY
was able to distinguish more classes. The comparison
of the generating statistics and the CLASSY statistics
is presented in table XI. Only the variance terms
from the multipass covariance matrix were available.
Again, there is remarkable correspondence between
the CLASSY statistics and the generating statistics.

CONCLUSIONS

- The main conclusion of this paper is that the per-

40 09809 7  1.0000 0.0191

formance of the CLASSY clustering algorithm com-
pares favorably with that of ISOCLS on both the real
and simulated LACIE segment data. In terms of per-
formance, these results were obtained despite the



Ta8LE X.—Comparison of Cluster Statistics for Pass 2 Simulated Data

('LJS.IS Y statistics

Cluster  Idennfication Generating stanisin s
aumber
AMean Covariance matrix Mean Covariance matrix
wrlor veclor
4 Wheatl 2036] [o9 1.21 03¢ -oo1] [ose] [ 104 013 =019
019 |1 3.2 24 —6s| [2067] 108 287  -10 -9
27.29 38 24 .77 15| |27.45 13 -.10 1.84 1.76
813l |-o - 65 175 sas| a2ef |-a9 -95 1.7%6 3.50
5 Wheat2 [18.55] [0s2 069 -o01 —047} [isze] [1os 080 ~—003 —0.50
17.02 69 i -4 —18| linis 20 154 —.47 -—120
2.3s] |-.01 p 1.23 141 s3] - —-.47 1.46 1.50
2800 |-47  -119 1.41 325] 91l |-so  -1.20 150 351
L J L o L. J L -
I - o s -
I Barley! 23.30] [1.ss 1.74 122 09] [297] [200 1.97 1.83 1.41
2580] {174 3.16 1.52 112] l2sas| o7 3.59 2.36 Ln
2598] |1.22 1.52 1.65 9| bsa| s 2.36 292 1.84
2419 | 9 L12 91 L19] |a3so LMI 1.7 1.84 222
3 Grassl hoss] [ 200 os4  onl fon L1s 1.48 055 0.2
(grass2) 2086 207 470 91 -2 loss| |i4s 4.10 1.01 28
2337 | 54 91 1.10 0] (2318 55 1.01 1.40 64
p2sof | -2 70 123] jas2| |2 28 64 1.24]
2 Swbblel hi9o] [os7 062 0717  069] [240] [foss 0.44 0.31 0.22
(stubble 2, |23.64 64 112 70 66 a3 44 1.17 38 29
fallow, 4.2 7 70 1.51 140] faas 3 38 141 92
barley 2) Lzs.uJ 9 6 10 ) fam| |2 2 92 18] -
fact that CLASSY reduces the number of clustersby REFERENCES

a factor of 4 to 6 as compared to ISOCLS. This per-
formance indicates that CLASSY is indeed approx-
imating the empirical mixture density rather than
just dreaking up the data space into small homo-
geneous areas as does ISOCLS. This conclusion is
further substantiated by noting the high degree of
correspondence between the CLASSY cluster
statistics and the generating statistics of classes in the
simulated data. When data from band 1 of each of
the 4 simulated acquisitions was clustered using
CLASSY, 5 of the 10 classes were very accurately
identified. The remaining classes, whose statistics

were very close together, were broken into two

reasonable groups. It appears, therefore, that the
CLASSY algorithm may well provide a solution to
the fundamental problem of clustering—the deter-
mination of the inherent number of classes in the
data. .-
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TaBLE XI.—Comparison of Cluster Statistics for Band I for Each of Four Passes of the Simulated Data
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Appendix

The equation used to obtain iterative estimates of
the a priori class probabilities or proportions, a, is
derived beginning with equation (9), which is re-
peated here in a slightly more expanded form.

N 1 E;
"_Ilv_zaipl ("klk )

=1 P (%) ah

where

i“fi (xelE;)

P (%) = ;

Since g; does not depend on k, a; may be canceled
from both sides of the equation to obtain

¥p
= A Py
VL (A2)

where, for convenience, the functional notation has
been simplified.
Now,

(AY)

lN
'ﬁz

But

m
Py = apy ¥ ’Zl"ipjk

L3
" Here, define
m q ‘ -
qlk = 1;‘ (AS)
0, otherwise
So,
o) 3 ez (17
N Px
‘Lﬁ (l - ‘i) P (l - "t) Uk
N&a P
(A6)
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N

0= 2

k=1 Pk

Pix ~ ik (A7)

assuming a, * 1. Breaking this sum up into those
terms which are positive and those which are nega-
tive results in

Pix — A .

E Pix — 9 (A8)
Py

Py

0= ¥

Pix”>x Pix <4

Now, g;is reintroduced as follows:

(A9)

If we now solve for the gs which are outside the
square brackets in terms of the g;'s, p's, and g,’s in-
side the square brackets, the following is obtained.

. z P — i

. Py
>
o= Pix >
! Pp — Pix — 9x
¢ L —5— - (1-q) L =
"n>e, 'k m<ay 't
Pu = 4
4 Z =
> Py
Pix 9k
- Z Pik 9ix
Py <9 P
Py —
'l Z p‘
P > Un
-
N - S _ L,
p >y P Pix <dix &

(A10)
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This is the itcrative equation used to obtain propor-
tion estimates in CLASSY.

Equation (A10) may also be put into a form il-
lustrating the nature of the update term to obtain

N .
. Pix = Qi

a (1l —a Z—- '

i ( l) ey pk
a =aq + " P (All)

N - _ _ =
E) Py 2 P

Pik>9x Pik <4k .

This equation illustrates that direct functional
iteration using equation (A10) amounts to adding a
correction term given by

o (l a "i) ﬁpﬂc ~ A

k=1 Pk
ik Pix
N - Z ..;_._ Z -
Pik> x k Pux<qy k-

to the old value of g;in order to obtain the new value

of a, - - .
As a way of comparing the iterative equation for

proportion estimates used in CLASSY (eq. (AI0)) t0

the standard maximum likelihood iterative equation

(eq. (Al)), one may rework the standard equation so

that the nature of the update term is apparent. Using

equation (A6), one obtains

(l -a ) N p., —g.
i ik ik
1=14+ *—7W > =—08  (Al2)
' N o k&
or
4 (' - "1) ¥ Pix ~
9 =q+ > (A12b)
¥ o A

This equation reduces exactly to equation (Al).



A comparison of cquations (All) and (A12) significant number of puints such that 0 < p, < |
shows that the difference is in the term N versus and 0 < ¢, < 1. This corresponds to the case where
cluster /is a“mixed™ cluster; that is, there is a signifi-

cant amount of overlap between cluster 7 and other

N - _ﬂ"_ - f'_*_ clusters. Since it is precisely these “mixed™ clusters

for which the standard iterative equation (¢q. (Al)

Py Py
> P.1<4q; . . .
Pik > ik ik~ ik or (Al12)) converges slowly, the iterative equation

° , used for proportions in CLASSY (eq. (A10) or
* Thus, the iterative equation used in CLASSY (eq.  (All)) should converge more readily.
(A11)) will amplify the correction for g,if there are a
. _
L J
‘ L4
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