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CLASSY-An Adaptive rv1aximumLiI(elihood
Clustering Algorithm*

R. K. LenningtonQ and M. E. Rassbach'>

ABSTRACT

A new clustering method called CLASSY, which
alternates maximum likelihood iterative techniques
for estimating the parameters of a mixture distribu-
tion with an adaptive procedure for splitting, com-
bining, and eliminating tI'·.eresultant components of
the mixture, has been developed. The adaptive pro-
cedure is based on maximizing the fit of a mixture of
multivariate normal distributions to the observed
data using its first through fourth central moments.
The method generates estimates of the number of
multivariate normal components in the mixture and
the proportion, mean vector. and covariance matrix
for each component. •

This paper describes the mathematical model
which is the basis for CLASSY and outlines the ac-
tual operation of the algorithm as currently imple-
::tented. Results of app!ying CLASSY to real and
simulated Landsat data are presented and compared
with results generated by the Iterative Self-Organiz-
ing Clustering System (lSOCLS) algorithm, a deriva-
tive of the ISODA TA algorithm, on the same data
sets.

INTRODUCTION

The Large Area Crop Inventory Experiment
(LACIE) is dependent on clustering for the deter-
mination of spectral classes within a Landsat image
of a sample segmC'1t (ref. I). Currently, the Iterative

•The current material for this paper was developed under
NASA contract NAS 9·15200 and prepared for the Earth Obser.
vilions Division. NASA Johnson Space Center. Houston. Texas.
CLASSY was developed by M. E. Rassbach while he .••·as a NIt·
tional Research Counl:il postdoctoral fellow work,na at the
Johnson Space Center.

-Lockheed Elel:tronics Company. tloustc·,. Texu.
bElosic.lnc .• Houston. Teus.

..

Self-Organizing Clustering System (lSOCLS) is used
for this purpose (refs. 2 and ). ISOCLS is t'tasically a
variation of the k·means or ISODA TA algorithm of
Ball and Hall (refs. 4 and 5). Although this algorithm
may be interpreted as a simplified maximum likeli-
hood procedure. it is fundamentally a heuristic
algorithm for breaking a data set into fairly
homogeneous compact clusters.

A new clustering algorithm called CLASSY,
which approximates the mixture distribution of a
given data set such as Landsat data with a linear com·
bination of normal distributions, has been
developed. CLASSY operates by interleaving max-
imum likelihood iterative estimation with an adap-
tive procedure for splitting, combining. and eliminat-
ing the resultant components of the mixture density
(or clusters). The ad:1ptive procedure is based on
maximizing the fit of a mixture of multivariate nor-
mal distributions to the observed data using its first
through fourth central moments. This procedure
allows new components (or clusters) to be created if

. any existing one appears to be multi modal or other-
wise nonnormal. CLASSY produces an estimate of
the proportion, me:1n vector, and covariance matrix
for each co:nponent in the multivariate normal mix-
ture. It differs from standard maximum likelihood
procedures in that it also generates an estimate of the
number of components in the mixture.

The CLASSY algorithm is currently implemented·
on an IBM 370-148 computer. It is written inFoitran
IV language and currently accepts as input Landsat
imagery on magnetic tape. Both line printt:r and mag-
netic tape output are generated by the program.

The following section of this paper describes the
mathematical model that is the basis for CLASSY
and provides a brief descriplion of the actual opera-
tion of the algorithm. The section entitled "Results"
contains comparisons of the perform:1nces of
CLASSY and ISOCLS on simulated data and on ac-
tual Landsat data used in LACIE. Finally. these
results are evaluated and conclusions are developed .
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MATHEMATICAL DESCRIPTION parameter vector". m so a\ to maximize the following
function:

Assumptions and Problem Definition

The fundamental mathematical assumption un-
derlying CLASSY is that the data ma}' be usefully ap-
proximated by a mixture of multivariate normal den-
sities. That is. if x is an observation vector and p is its
probability densiJ)' function. then

m
= L of; ( x Ip;,!;)

ia 1
(1)

~ [ m ]/. ( PI,I IfI·Jlm·) a A (m.",") n Lcl!" (·,ISI,.~; I
/. I i-'

(3)

The values of m and.". m which maximize equation
.(3) specify a set of distributions that will be called
clusters. Of course. A (m •.".m) must be chose., so that
it satisfies the normalization constraint

where OJ is the a priori probability of occurrence of
class i,' p,{x Il&j.!;) is the m~ltivariate normal prob-
ability density function for class; with mean vector
I&jand covariance matrix Ii: m is the total number of
classes; trm is the full set of parameters (Le.• 1°1' ... 0

0"..1&10 ••• • I'm· Ii.··· .1m})·
Given a set of statistically independent. unlabeled

sample vectors Ix)}. the likelihood function may be
formed in the following manner: •

(4)

The upper limit on m is infinity since the possibility
of generating an infinite number of clusters must be
considered (in theory).

Typically. in the absence of other information. the
a priori probabilities may be chosen as

where (j •..•Cis a constant containing normalization
factors over .".m space. /3 is an overall normalization
constant. and Rm is a finite region of.". m space corre-
sponding to allowable values for the parameters.
Using this simple form for A (m,"" m) in equation (4).
the following is obtained.

where N is the total number of samples.
So far. the assumptions and equations parallel the

usual maximum likelihood development. CLASSY
makes the additional assumption that each value of
the parameters m and .".m occurs with an a priori
probability distribution A (m.lI'm)' This Bayesian for-
mulation of the problem is taken to avoid the
degenerate situation of increasing the likelihood by
Benerating more and more clusters with smaller and
smaller values of oj- The practical limit of this proc-
ess is that each class will be associated with only one
data point.

The objective of CLASSY. then. is to determine
the discrete parameter m and the continuous
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Becau'ic the splitting Jnd combining te,hniqucs oper-
ate around each eXlsling c1U'iler and the stOltislics for
hypoth~ses ,on,crning difrcrc:nt numb~rs of dusters
are maintain~d s~paratcly. it ha'i becn observed that
the final local maximum will oftcn be global.

Necessary conditions for a maximum of
L( IX l.m,,,.m) with respect to 1r"'. assuming a fixed
number of c1a'ises m. are well known (see Duda and
Hart (ref. 6) and Wolfe (ref. 7» and are given by the
following eq'uations:

1 ~ow if

where." < I, then the sum in equation (6) will con-
verge and {J - .1 - y provides the proper normaliza-
tion. Thus, larger valucs of y provide a priori bias in
favor of more clusters. whereas smaller values pro-
vide bias in favor of fewer clusters.

In the current version of CLASSY. the authors
have been using y - ("-I and approximating the RI
integral of "'"I by ~d. This represents a crude ap-
proach to the problem of determining the form of
A(m,.m)' However. in practice. the overall technique
to be described in the next section has proven not to
be sensitive to reasonable changes in the value of C

With the form for A (m,1r m) assumed in equation
(S), the function to be maximized becomes

= QjPi ( xk 11Jj"~j)
m

~ Ql'i(xk Ipj'~j)
'=1

(8)

(9)

L ( 1-11 "".Jr •••) •

where dis the dimensionality of the observations x.t

Solution Procedu •.e

Many approaches may be taken to maXimIze
equation (3). The approach chosen in CLASSY is to
interleave maximum likelihood iteration (designed
to maximize L« Xl l.m.• 1'1) with respect to the con-
tinuous parameter vector 1rm) with a discrete split,
join, and combine process (designed to maximize
L( (xj}.m.1r m) with respect to the discrete parameter
m). Although the theoretical convergence properties
of this procedure have not been examined. it is ex-
pected that, by alternating these two techniques._
values of m and. m corresponding to at least a local
maximum of L« Xl J ,m.'" m) will be determined.

(10)

N T
EP ( ilxk·1rm) ( xk - Pi ) ( Xl - Pi)
kal

~i c------N-----------

L P ( iIXk,1rm)
kal .

(11)

where P(ilxk.1r m) is the posterior probability .of class
i. given the k.h sample vector and the values of the
parameters. and aj• Pi' and Ii' i •• 1, ... ,m, are the
elements of 11'", •.

Numerous techniques have been proposed for ob-
taining a solution to this set of coupled, simultaneous
nonlinear equations. Specific methods have been
suggested by Quirein and Trichel (ref. 8), Day (ref .

. 9). Hasselblad (ref. 10). and Wolfe (ref. 7). among
others. CLASSY uses direct functional iteration for
equations (10) and (Il)~ th<atis, use of estimates for
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14, and I, on the right side to produce improved c'iti-
mates on the left side.

Estimatcs for the a priori claS'i prohahilities 0, are
computed using an itcration scheme which. has
proved to convcrge more rapIdly than simple func-
tional itcration using equation (9). The scheme used
is speCified by the fOllowing equation, which is
derived in the appendix.

where

a. ••
l

N I: the total number of observations

(12)

a random fashIon. U••ing scramblcll datJ and updat-
ing the parameter values with cach new data point,
the authors have ob'icrved that the number of sam-
ples Ut') required for initial convcrgence is on thc'
order of a few hundred. even for large data sets.
Following initial convergence, thc parametcrs are up-
dated only after a complete pass has been made
through the data. This second type of iteration allows
a fine tuning of the parameter valu~s and is not sub-
ject to problems related to data correlation. The con-
ditions under which the second mode of parameter

. iteration is entered arc discussed later in this section.
The same iteration scheme used to update the

parameters is also used to accumulate third- and
fourth-order central moments. That is, current
values of the parameters are used with each new data
point to form the new terms to be accumulated for
estimating the moments. The fundamental equations
for the estimates of the third- and fourth-order mo-
ments are generalizations of equations (10) and (It)
and are given as

and

(14)

This equation is used by substituting old values of Qjo

"'" and I" ; - 1, ...• m.on the right to obtain an up-
dated estimate for Qj on the left. The summations are
taken over all values Jf Xk such that P, > qi or Pi < qi'

Initially, each new data point xj is used to update
the parameter values using equations (8) through
(12). This procedure allows rapid evolvement of the
parameters as new data points are processed. A
danger lies in the fact that the data are considered se-
quentially. If significant correlation is present in the
data, updating the parameters with each new data
point could theoretically cause the maximum likeli-
hood equations to converge very slowly or to under-
go cyclic drifts. This problem has been found to be
particularly severe in Landsat data, which exhibi~
high correlation within fields. To reduce the effects
of thi~ correlation, the data are initially scrambled in
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where Xjk - (Xjk - P.;k)
~k ••.• the kth component of the jth sample

vector
p.iJc - the current estimate for the kth com-

ponent of the mean vector of cluster;

and where

The parameter Wi is defined as the weight for cluster
; and may be cons:dered as the number of points
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assigned to a cluster on a fractional probabilistic
basis; 51,) is :1 three·dimensional"skewness" tensor.
and KI,) is :1 four-dimensional "kurtosis" tensor, To
reduce the number of parameters to be estimated and
stored, traces of these tensors are formed using the
inverse of the estimated sample covariance matrix
for cluster i (I,) to obtain

where k - I,2, ... , d, and

where k.1 - I, 2, ... , d, and

T [- -]'11 II: XJ1·. ,xJd

During the initial iteration mode, when parameter
values are changing with each data point, the esti-
mates for
I

the subsequent testing of these h)'potheses using a
likelihood ratio test. At certain points in the process
of ma\imum likelihood iteration. it is po~')iblc to
generate a hypothesis concerning the fit of a given
cluster to the data; namely. either that the data are
beller represented by two clusters rather than one (a
split hypothesis) or that the data are beller repre-
sented by combining the given cluster with another
cluster (ajoin hypOlhesis), Each cluster is checked to
determine whether either a split or a join hypothesis
seems reasonable when the weight for that cluster as
defined in equation (15) exceeds a threshold. At this
same time, a portion of the old data. which have been
accumulated using less accurate parameter values. is
subtracted from the appropriate sum for each of the
parameters given in equations (8) through (11). The
weight threshold is initially set at 200 and increases
each time it is exceeded. This procedure allows an in-
itial fit to the major clusters in the data and a subse-
quent development of more detailed cluster struc-
ture.

The generation of a split hypothesis is governed
by comparing scalar measures of multivariate skew-
ness and kurtosis for each cluster to thresholds
derived from the appropriate distribution for these
measures computed under the assumption of a
multivariate normal distribution. The scalar
measures of multivariate skewness and kurtOSISare
contractions of the skewness vector SU) and the kur-
tosis matrix K{i) with respect to the inverse of the
estimated covariance matrix for cluster i. "i.;-l. These
measures are given by

and
(18)

(19)

for each cluster i are only approximately correct. The
second mode of iteration produces a more accurate
estimate of these statistics. As shall be seen. the esti-
mates of S(j) and Kli) are used in the maximization
of the likelihood with respect to the discrete
parameter nr.

The optimization of L( IxJ} .m,''' "') with respect to
the discrete parameter m takes the form of generating
hypotheses concerning the number of clusters and
" . '

Here. kj is the trace of the normalized kurtosis matrix
for cluster i and (kt)2 is the trace-free component of
the square of kj•

If anyone of these three statistics given by equa-
tions (18) to (20) exceeds its threshold value. the hy-
pothesis is formeJ that the ith cluster may be split
into two parts ..The parameters for each of the two
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new componcnt clusters arc estimated by minimil-
ing the squared dirrerenccs bct"ccn the ob')ervcd
cO\'3ri3ncc matri~. thc skewne'i~ vector. and the kur-
tosis matrix and the corrc'ipondlng quantities for the
mixture distribution composed of the two new nor-
mal distributions. The proportion and mean for the
mixture composed of the subclustcrs are defined to
be exactly equal to the corresponding quantities for
the parent cluster. That is. if a, and po, are the current
estimates of proportion and mean for cluster i and
il; • il, • P., • and P.,..•are the corresponding initial
vJlues2 of the subcluster parameters. it is required
that

and

ill II: ill + il.
I '2

(21)

(22)

minimize by mC.lns of a steepc'it descent algorlthm;1
quadratic form that may be expressed as

where !/.K(i). and S(i)are the current estimates of
the covariance matrix. the kurtosis matrix. and the
skewness vector. respectively. for cluster i; !p. Kp.
and S are the corresponding "pooled" estimates
from t~e mixture of the subclusters under the restric-
tions of equations (21) and (22)~ and at. a2' and a)
are arbitrary constants. The norms are the appropri-
ate matrix and vector norms. That is, if .\f, is one of
the symmetric matrices in equation (23) and
Vi - S(i) - Sp. then

IIJ~W= Tr (Mjtj - t MiIj -1)

IIvIIF = vltj -1VI

Thus. th~ difference in subcluster proportions and
the difference in the subcluster mean vectors are left
as free parameters. The other free parameters are the
independent elements of the two subcluster
covariance matrices. Therefore. a total of

1 + d + 2 [d(d; 1)] = (d + 1)2 .

parameters must be determined.
There are [d(d + 1)]/2 equations, each of which

matches the covariance matrix and kurtosis matrix
parameters for the parent cluster to the correspond-
ing parameters for the subcluster mixture. In addi-
tion •.there are d eq-.;ations matching the skewness
vector parameters for the parent cluster and the
subcluster mixture. This is a total of d2 + 2d equa-
tions. Thus. there is one more free parameter or
unknown than there are equations and a unique solu-
tion is not possible.

The approach taken to obtaining a solution is to .•

676

Minimization of equation (23) under the restric-
tions of equations (21) and (22) produces estimates
for the proportions. mean vectors. and covarianl;e
matrices which define two new multivariate normal
clusters. In the generation of a split hypothe5is. the
statistics defining the multivariate normal parent
cluster are not discarded. When the maximum likeli-
hood iteration cycle is begun again. it is performed
for the previously existing clusters, including the
parent cluster. and for the two new clusters. which
may be thought of as subclusters of the parent
cluster. Thus, as split and join hypotheses are gener-
ated. a hierarchical cluster structure or cluster tree
evolves. Final decisions concerning the choice of a
parent cluster or its subclusters to represent the data
are made on the basis of likelihood ratio tests as will
be described later.

The generation of a join hypothesis is t~e inverse
of the split hypothesis generation procedure. That is.
if the generation of a join hypothesis for two already
existing clusters is deemed reasonable. then statistics
for a new parent cluster are calculated from the
multivariate normal mixture distribution defined by
the two clusters to be joined. The new parent cluster

' .. ~



is inscrtcd althe Icvcl of Ihe c1u\lerS Ie)be joined and
the cluslers 10 be joined ar~ moved 10 Ihe ne'llowcr
level in the tree a'i subduslers of Ihe new p\lrent.

It should b~ nOled that only clusters •••.hlch have a
common parcnt arc eligible 10 be Joined The lest for
determining when a JUIn hypothesis should be gener-
ated is designed to mea'iure Ihe degree of overlap be-
tween clustcrs having a common parenl cluster. (All
the clusters at the top Icvel of the tree are assumed to
have a common parent.) The overbp is checked by
comparing the mean vectors and the diagonal ele-
ments of the covariance matrices for two clusters. A
heuristic criterion is used to perform this check. This
criterion is given by equation (24).

(24)
~,. (

•••%- ••.••••. _1) ~
(", - ",)' ·'111 •. .;-, (II, -..,1 •.A I: (I-I••• \-lftl •••11J

, , • -I ' I

(tii "')'
• \~ - W; • I

a given parent c1u~h:r i. then the logarilhm of the
likelihood ratio of the subdusters to the parenl j'i. ac-
cumulated at the ".Imc time Ihat maximum likeli-
hood iteration is taking place. The form of this likeli-
hood ralio is given by equalion (25).

In A, • In

• (m, - 1\ JD; + t Iin [I: "t P (xAl!t ..!t )\1
J '-I t -1 I I I ~

- In &.• ('Ao,.1',)] I (25)

where W;is the current weight for cluster i and A and
B are arbitrary constants (currently. A •• 0.3 and
B - 0.18) .•

The first term in the numerator is a weighted dis-
tance between the mean vectors of clusters i ::nd j.
The weighting is accomplished by an average inverse
covariance matrix for clusters i and j. The second
term in the numerator is a measure of th~ difference
in the diagonal elements of the two covariance
matrices. The diagonal elements rather than the full
covariance matrices are used for computational
simplicity. A more complete expression involving all
covariance terms would be In[det IjIj-I). The
denominator is designed to discriminate against
small clusters in tl1e sense that Rij will be artificially
reduced if the weight of one cluster is small relative
to the weight of the other cluster. This factor is
designed to give large clusters an opportunity to ab-
sorb small clusters if such a join does not substan-
tially affect the statistics of the larger cluster.

The Rijcriterivn is computed for each cluster hav-
ing the same parent as cluster i. If the cluster j for
which Rij is a minimum is less than an empirically
set fixed threshold. then a join hypothesis for cluster
I and j is generated.

Final decisions concerning the acceptance or (e-
jection of split and join hyotheses are made in terms
oflikelihood ratio tests. If there are m, subcluc;ters for

. '

where A; is the likelihood ratio for cluster i; a;. tJ.;.
and I;are the current estimates of the parameters for
cluster i; and ak_ and Ik_ are the corresponding
subcluster parameters. This log likelihood ratio is
tested against a threshold computed assuming that 2
In Aj is approximately distributed as an xl random
variable with c~:"ees of freedom equal to d + 1. A
one-tailed test is used. and the probability of a type I
error is set at 0.01. If 21n A;exceeds the threshold set
by the test. then the statistics for the parent cluster
are eliminated and the subclusters take the place of
the parent cluster.

It is also possible that In A; may become negative,
(;ven though in theory this should not occur. In prac-
tice, negative values may occur because of poor in-
itial estimation of the subcluster parameters or lack
of convergence in these estimates. To avoid the ex-
pense of maintaining poor subc1usters. the
subc1usters are eliminated in favor of the parent
cluster when In Ai falls below a fixed negative
threshold. This threshold is set to a large negative
value to allow the subcluster statistics to converge if
they are going to converge.

One other possibilit) in testing the likelihood ratio
is that the subcluster statistics may actually converge
so that the mixture distribution defined by the
subcluster par3meters reproduces or very nearly
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where ale' "'Ie' and Ik are the current estimates of
the parametefs for the subclusters of cluster i. the
statistic computed is

reproduces thc parent cluster di••trIbution. In such
ca~cs. In .\, will rcmain at a low valuc pos'ilbly
slightly grcJter than or le'is than lero. If thIs ol:curs.
it may be as••umeu th.lt the parent c1U'iICris the most
economical description of the data and the
subclusters ma)' be eliminated. To test for this situa-
tion. another st3tistic based on the accumulatcd
point probabilities under the parent and subcluster
hypotheses is examined. Defining

S,. and .\, arc reset. Thus. the'ic statistics depend
only on the data processed since the last testing of
the cluster statistics for c1u'itcr i.

The pre'ient program cycles through the data a
fixed number of times. (The numbcr of passes
through the data is controlled by an external
parameter.) When the desired number of passes is
complete. the program clusters the data by e~amin·
ing it point by point and assigning each d:lta point to
the cluster in the cluster tree for which the prob-
ability of occurrence of this data point is the greatest.
This is the only time in the program that points are
assigned to clusters. When all the points have been
assigned, a cluster map showing the cluster symbol
for each point is printed out. The program also prints
out the final values for the parameters for each
cluster in the cluster tree.

Figure 1 is a general flow diagram for the
CLASSY program. This is not a detailed flow
diagram for the program but merely serves to sum-
marize the information given in this section in a con-
venient manner.

The initial values assumed at the beginning of the
program are as follows.

(26)

To evaluate the CLASSY clustering algorithm, it
was applied to both real and simulated Landsat data.
Performance measures were defined and calculated
for each trial of the algorithm. The measures were
compared with those derived from applying the
lSOCLS algorithm to the same daOta..

Equation (26) gives a crude measure of how much a
parent cluster differs from the mixture of its
subclasses. If Ej becomes smaller than a fixed em-
pirically determined threshold and the log likelihood
ratio is less than a fixed small positive value, then the
subclusters are eliminated in favor of the parent
cluster.

The one remaining test in the portion of the pro-
gram that performs maximization with respect to the
number of classes is a simpie test on the proportion
OJ of each cluster or subcluster. If this proportion falls
below a threshold value, currently set to 0.01, then
the cluster is eliminated: This test is used primarily
in the interest of efficiency since very small clusters
do not significantly affect the overall mixture dis-
tribution.

All the tests for the generation of hypothesized
new clusters and for the elimination of clusters or
subclusters occur at certain intervals during the proc-
ess of maximum likelihood iteration and statistics ac-
cumulation~ namely, when the weight for a given
cluster has increased by a fixed amount or when a
complete pass has been made through the data since.
the last tests were performed. After the tests have
been made and any result3nt restructuring of the
cluster tree has taken place, Ej (given by eq. (26», Kj,

m = 1

PI = [or]
0.04

~1 • [0...]
DATA, PROCEDURES, AND RESULTS

(27)

678

=======================-====="'"



nGURE I.-now diacnm ror Iht CLASSY .reorilh••••

679



Data Sets

. Two different data sets were used in the compara-
tive evaluation of CLASSY and ISOCLS. The first
was a set of Landsat acquisitions of four different
lACIE segments. Each LACIE segment is 196 pic-
ture clements (pi,cls) per line by 117 lines and cor-
responds to a S· by 6-nautical·mile area on the
ground. The second data set was a group of four
different simuljted acquisitions of a simulated
lACIE segment. Each of these data sets is described
separately in the following paragraphs.

The four LACIE segments were selected on the
basis of the availability of ground truth at regularly
spaced pixels in the image and the provision of a
representative sampling of lACIE segments in
terms of field structure and the proportion of wheat
present. Once the segments. had been chosen, the ac-
quisition that had the greatest separability. as
measured by the Bhattacharyya distance. was
selected. The Bhattacharyya distance was computed
between wheat and non wheat classes where the class
statistics were obtained from ground-truth fields.
The segment number and location, the acquisition
date with the largest separability. and the ground-
truth percentages of wheat and small grains for each
segment are given in table I.

TABLE I.-Description of LA CI£Sample Segments

Stprtnt Location Acquisition Ground Ground
date I1Uth. I1Uth,

,etant pvc~nt
wMal small

,rains

1181 Kansas Mar. 10,1976 23.4 29.0
t988 Kansas Noy. 8, t975 33.0 33.0
1961 Kansas Jllly t 8, 197c 8.2 8.2
1'965 .North Dakota Allg. 8, t976 4t.6 47.0

l'besimulated data set consisted of four simulated
Landsat .acquisitions. each 196 pixels by 117 lines.
l'hts d.:lu set was generated by IBM f~r the Mission-
flannil\gand Analysis Division at the Johnson Space
Cent.eT (ref. 11). Each "acquisition" was obt:;ined
trrst by specifying the mean vector and covariance
lnatri~ for 10 different classes. The class statistics for
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each class were specified so as to simulate the
LACIE data for two whcat classes (WI and w2). two
barley cl.!sses (81 and ~). two classes of grass .(G1
and G:), two stubhk c1a'ises is, and S:!), and two
classes of fallow (FI <.1nd(2)' The statistics for these
classes were actually obtained from Landsat data
representing an agricultural arca in Hill County.
Montana. Once the statistics for a given class were
specified. independent samples were generated from
a four-dimensional multivariate normal distribution
having those statistics. These samples were then
placed in rectangular fields arranged over the simu-
lated segment. This process was repeated for each
class and for each of the four acquisitions. The ar-
rangement of the simulated fields over the segment
was the same for each acquisition. The pattern of the
simulated fields is given in figure 2.

W1 G2 81 51 W2 52 W2 V.J1 G1 82

F2 W2 G1 W1 51 52 G2 82 W1 B1

W1 G1 52 G2 51 '1"282 W2 81 F1

G2 51 W2 81 52 W1 W2 G1 F1 82

W2 W1 G1 81 W1 51 G2 52 82 W2

nCflRE 2.-Distribution 01classes In slmulattd segment.

Evaluation Method and Procedures

CLASSY was evaluated using a comparative
analysis method in which the clustering results of
CLASSY were compared with those of ISOCLS
using the ground truth as a reference. The evaluation
procedure consisted of two steps.

1. The CLASSY and ISOCLS algorithms were ap-
plied to each segment in each data set. CLASSY waS
run for three complete iterations through all the data
in each segment. lSUCLS was run in the nearest
neighbor mode with 40 ground-truth pixels as start-



ing vectors. In this molle. ISOCLS m~rcly J<,~igns
pixels to the nearest starting vector mea'iured in
terms of L-I dIstance rJther than op~rJting

• iteratively. This molle WJ'i cho'icn for ISOCLS
because this .•••.as the: manner in .•••.hlch the algorithm
was currently being used in the LACIE project.

2. The clusters in the line prtnter map produced
by each algorithm w~re anal)'led by first recording
the cluster symbol and the corresponding ground-
truth label (eith~r .•••.heat or non wheat) for each pixel
where ground truth .•••.as available. These results were
tabulated. so that the number of ground-truth wheat
pixels and ground-truth nonwheat pixels falling in
each c1ust~r was known. The clusters were then
labeled wheat or non wheat by majority rule.

A measure of the accuracy of each clustering
algorithm in separating wheat from nonwheat (or a
measure of the overall purity of the wheat and non-
wheat clusters) was con'!Puted by estimating the
probability of correct classification (PCC) for the
labeled clusters. This probability is given by

Ml M2
Pee = :E P (OJO) P(O)'" L P (w,~w) P(W) (28)

I-I I-I •

where ml is the number of clusters labeled "other";
'"2 is the number of clusters labeled wheat~ P( 0;10)
is the probahility that a !lixel fall~ in the ith "other"
cluster, given that it is other than wheat; P( Wil W) is
the probability that a pixel falls in the ith wheat
cluster, given that it is wheat; P( W) is the a priori
probability that a pixel is wheat~ and P( 0) is the a
priori probability that a ~ixel is other than wheat.
Empirical proportions were used to estimate these
probabilities and a priori values, resulting in the
following estimate:

where NT is the total number of ground-truth pixels,
NOlO is the number of ground-truth "other" pixels
fall~ng in the ith "other" cluster, and N wI w is the
Dumber of ground-truth wheat pixels falltng in the
Ah wheat cluster. It is noteworthy that, to obtain an
ICaJro:te estimate of PCC using equ:ltion (29). it is

. DUeSsary that several ground-truth pixels fall in each

c1u~ter. Spccific.JII}·. if there are clusters" hich have
only one or two ground·truth grill-Intersection pixels,
the estlnlJte of pce will be biased on the high side.

As a part of the analysis. the proportion of wheat
was also estimated for the labeled dusters and com-
pared to the ground-truth value. The equation used
for this estimate is

(30)

where N w is the total number of ground-truth pixels
(wheat an& other) falling in the ith wheat cluster.

Estimates computed 'using equations (29) and
(30) were obtained for each algorithm as applied to
both the real and simulated data sets.

Results

The results of these computations are given in ta-
bles II through XI. Tables II, III, V, and VI compare
CLASSY and ISOCLS results for the LACIE seg-
ments examined~ the corresponding results for
simulated segment data are given in tables VII
through XI.

Table II compares the number of clusters ana me
PC~ estimates for ISOeLS (peC/) and for CLASSY
(PCC,) as a result of clustering each of the four
LACIE segments examined using both methods.
The PCC estimates for CLASSY are, on the average.
about 4 percentage points lower than those for
ISOCLS. However. since the version of ISOCLS used

TABLE I/.-Comparison of the Number of Clusters and
the Estimated Probability of Correct Classification

Using Single-Pass Segment Data

S4mmt ISOCLS CLASSY p~~c -

~CI P~Cc
P CI

No. of No. of
duslm dust~n

1181 40 0.1410 7 0.8052 -0.0358
1988 40 .1070 8 .7661 - .0409
1961 40 .9236 11 .9028 - .0208
1965 40 .7<619 9 .6774 - .0645
A verilC 40 .1284 8.7S .7875 - .0405
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generates a fJctor of 4 to 6 time'i as many clusters as
CLASSY. many of the ISOCLS clusters contain only
one or two gruund·truth grid.intersection points. As
discussed in the preceding section. thIS means that
the PCC estimates for ISOCLS will be biased high
relative to CLASSY. In addition. each ISOCLS
cluster t)'pically contains one ground·truth point
used as a starting vector for that c1ustcr. Since the
label of these starting "'ectors almost always agrees
with the cluster label. this amounts to a further high
bias in the PCC estimates for ISOCLS. In the light of
this bias in favor of ISOCLS and the economy repre·
sented by the greatly reduced number of CLASSY
clusters, CLASSY compares very favorably to
lSOCLS.

The LACIE segments used in this study con·
tained varying amounts of wheat. The ground-truth
percentages of wheat P( HI) and small grains P(SG)
are given in table III. The estimate of the proportion
of wheat computed using the ground-truth grid.inter-
section dots PD( HI) is also included. An estimate of
the proportion of wheat in the whole scene deter-
mined from the clusters labeled wheat can be ob-
tained using equation (30). The wheat proportion
estimates resulting from applying this equation to
tlte CLASSY results pc( ~Y) and ISOCLS' results
P/.. W) are also given in table III. Comparing these
percentages to the ground-truth wheat proportions
shows that, with the exception of segment 1965, the
wheat proportion estimd!t:s arc auuut .; to 6 percent
higher than the ground-truth wheat proportion
values. These slightly high estimates may be due to
the fact that, even though only wheat ground-truth
dots were used to label clusters, labeled wheat
clusters may reasonably be assumed to include some
small grains. The last column in table III shows that
'the ISOCLS estimate was closer to the ground-truth

wheat proportion for two segments and the CLASSY
estimate was c1oo;erfor the other two segments.

The imagery for segment 1965 was cltamined in
detail because the wheat proportion estimates for
both CLASSY and ISOCLS deviatcd conSiderably
from the ground truth and the PCC estimates ior
both algorithms were correspondingly low for this
segment. This segment contained numerous small
strip fields. Typically. small-field regions accentuate
misregistration problems. and such appears to be the
case for this segment. The misregistration of the ..
ground-truth reference acquisition relative to the ac-
quisition clustered reduced PCC values and distorted

. the proportion of wheat estimates for both
algorithms.

To obtain an idea about the relative performance
of CLASSY and ISOCLS when applied to multitem-
poral data, four-channel"green" images were formed
for each segment by applying the Kauth (ref. 12)
transformation to each of four acquisitions for a
given segment and then selecting the green number
from each acquisition. (It was necessary to reduce
the 16-dimensional data to 4 dimensions since
CLASSY is limited to 4 dimerisions at the present
time.) Table IV 1i~!Sthe four acquisitions used for
each segment. The results of comparing the PCC
values and the wheat proportion estimates for the
two algorithms are given in tables V and VI, respe(-
tively. Comparing table V and table II shows that the
PCC values for both algorithms remained about ~he
same for segments 1181 and 1961 and that they in-
creased significantly for segments 1988 and 1965.
The average difference between the CLASSY and
ISOCLS PCC values remained about 4 percent.
However, th~ CLASSY PCC equaled the ISOCLS
PCC for segment 1988, and the difference was very
small for segment 1961. The last column of table VI

•

TABLE 1I1.-Comparison of Wheat Proportion Estimatesfor Labeled Clusters
Using Single-Pass Segment Data

Stpwrrt Ground truth GroU~d.truth IJOCLS Ct:
SSY 0)- D,- 10)1-10,1

dolS O(W) I(W) ,(W) ~l(W) - ~(W) ~,(W) - ~(W)
P(W) P(SG)

1111 0.234 0.290 0.333 0.217 • 0.303 0.OS3 0.069 -0.016
1988 .330 .330 .322 .397 .217 .067 -.043 .024
1961 .012 .082 .097 .042 .069 -.040 -.013 .027
1965 .416 .470 .516 ..526 .64S .110 .229 -.119
Avcr·lc .266 .293 .317 .313 .326 .047 .061 -.021
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TABLE IV.-Acq/llsllions Uwd in Creating
Four·Channel Gre('nImages

shows that, when the four-channel green images
were used, the wheat proportion estimates from the
CLASSY clusters were closer to the ground-truth
values than were the ISOCLS estimates in every case.

Tables VII and VIII are analogous to tables II and
III. except that they give the results for the single-

: pass simulated data. The column labcled maximum
. likelihood PCC (PCC.'I> gives the overall PCC when
using standard maximum likelihood classification
where the statistics for each class were computed
from fields in the simulated image given the class
label for each field. Note that the PCC estimates for
CLASSY were higher than those for ISOCLS in two
ofthe four passes. In fact, on pass 2, where the sepa-
rability was greates!. the PCC for CLASSY equaled

1111

.988

1961

1965

Mar. 10,1976
Apr. 16,1976
May 3, 1976
July 14,1976

Oct.20,197S
May 6, 1976
June 12,1976
Sept. 28, 1976

Aug. 15,1975
June 12, 1976
Au&-23,1976
Sept. 10,1976

May 1\,1976
July 21,1976
Aug. 8,1976
Sept. 14,1976

TABLE V.--Comparisorr 0/ the Sumb~r 0/ Clufters and
the Estimatt'd Probability o/Correct Claw/iratio"

Usi"g the Four-Channel Grt!(!"Imagt' Data

~"'ntl ISOCLS CLASSY P~C -

,tCI pec, petl
No. of No. of
clus/trs clus/trs

1181 40 0.1667 4 0.8tXX> -0.0667
1988 40 .9357 16 .93S7 0
1961 40 .9161 23 .9091 - .0070'
I96S 40 .I06S 13 .7290 - .0775
A verlle 40 .JJ14 14 .8436 - .OJ78

the maximum likelihood PCC. On the average, the
PCC for CLASSY was 1.4 percent higher than that
for ISOCLS.

The proportion estimate computed from the
labeled clusters is given in table VIlI. Again, the esti-
mate from CLASSY was closer to the true value in
two of the four passes. However, the average in-
dividuallSOCLS estimate was about 2 percent closer
to the true value.

HAe results for· the simulated data using band 1
from each of the four passes are given in table IX,
Band 1 was selected arbitrarily to assess the use of
multi temporal data. Note that the PCC estimate for
CLASSY was 1.0, meaning that none of the CLASSY
clusters contained a mixture oi wheat and nun wheat
grid-intersection pixels.

Using the simulated data makes it possible to
identify a cluster with a certain class in the data by
determining which class contributes the majority of
pixels to the cluster. After such an identification ..~he
generating statistics for the class may be. compared
y:ith the cluster statistics produced by CLASSY. Ta-
ble X presents the results of such a comparison for

TABLE Vl.-Compariso" of Wheat Proportion Estimates for lAbeled Clusters Usi"g
Four-Chan"el Gre~!1lmage Data

Strmntl Groundtruth IjOCLS Cf:SSY 01- Dc- IDII-IO,I

P(W)
J(W) ,(W) ~J(W) - ~(W) tc(W) - ~(W)

P(~G)

1181 0.234 0.230 0.292 0..241 0.OS8 0.001 O.OSI
1911 .3JO .330 .316 .342 -.014 .012 .002
1961 .082 .082 .066 .069 -.016 -.013 .003
1965 .416 .470 .62S .S65 .209 . .149 .060
Avcrale .266 .293 .32S .304 .059 .039 .029
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TABLE V/I.-ClJmpaflSlJff of lite Sumbrr of OwteTs and tlt(·£5timafl'J Probability 0/
COfft'ct OamJicalton Usmg Sm1:h··PaH Smlll/lJll'd Dala

PCCM- P~CI PCCM- ptce
!\ A

PGJJ PCCM ISOCLS CL,f .'is Y P<.:Ce- PCCI

No. of P~CI No.o{ P~Ce
clust,,, dutl'"

I 0.93S 40 0.9139 S 0.9043 0.02\ 0030 -0.0096
2 .986 40 .9713 S .98S7 .O\S .000 .0\44
3 .970 40 .976\ 8 .9S22 -.006 .0\8 - .0239
4 .928 40 .88S2 7 .9\87 .043 .009 .033S
Averace .9SS 40 .9366 6.2S .9402 .018 .0\4 .0144

TABLE VIII.-Comparison a/the Wheat Proportion Estimates/or Labeled Clusters
Using Single-Pass Simulated Data

Pau P(W) ~I(W) ~,(W) 01- A °e- lOll -10,1
PI(W) - ~(W) Pe(W) - ~(W)

I 0.3398 0.3301 0.2536 -0.0097 -0.0862 -0.0765
2 .3398 .32S4 .3S41 - .0144 .0143 .0001
3 .3398 .3636 .2917 .0238 -.048\ - .0243
4 .3398 .3254 .3149 -.0144 - .0049 .0095
Averace .3398 .3361 .3086 -.0147 -.0312 - .0228

t~e rass 2 simulated data, whereas table Xl gives
"~::~3r results for the clustering using band 1 from
t,,:'1 of the four passes.

h the pass 2 CLASSY results, four of the five
~ ..·.:e~$could be clearly identified with 'Jne of the
f .~~~ .l::~.gclasses or distributions. A comparison of
' .• :~'e.1'vector and covariance matrices shows a

'··-·'~i..J'::llecorrespo:-:dence between the CLASSY
\ \ ., ::'$ and the generating statistics. Cluster 3 was
&. '.: c~.:.allydivided between grass 1 and grass 2.

T • f': IIX.-Probability 0/ Correct Classification
Using Multipass Simulated Data

Only the statistics for grass 1 are shown in the table.
Similarly, cluster 2 was a mixture of stubble, fallow,
and barley 2. The statistics for each of these classes
are very similar for this pass. The statistics for stub-
ble 1 are given as a representative example of that
group of clas~es.

The data from band 1 of each of the four simu-
lated passes had more separability; thus, CLASSY
was able to distinguish more classes. The comparison
of the generating statistics and the CLASSY statistics
is presented in table XI. Only the variance terms
from the multipass covariance matrix were available.
Again, there is remarkable correspondence between
the CLASSY statistics and the generating statistics.

-'-

"" /SOCLS

No.of ~CI
dllStm

..0 0.9809

CLASSY

No. of P~Cc
clustm

7 1.0000 0.0191

CONCLUSIONS

The main conclusion of this paper is that the per-
formance of the CLASSY clustering algorithm com-
pares favorably with that of ISOCLS on both the real
and simulated LACIE segment data. In terms of per-
formance, these results were obtained despite the



•

•

fact that CLASSY reduct'~ the number of clusters by
a factor of 4 to 6 as compared to ISOCLS. This per-
formance indicates that CLASSY is indeed approx-
imating the empirical mixture density rather than
just breaking up the data space into small homo-
Icncous areas as does ISOCLS. This conclusion is
further substantiated by noting the high degree of
correspondence between the CLASSY cluster
statistics and the generating statistics of classes in the
simulated data. When data from band 1 of each of
the 4 simulated acquisitions was clustered using
CLASSY,S of the 10 classes were very accurately
identified. The remaining classes, whose statistics
wcre very close together, were broken into two
reasonable groups. It appears, therefore, that the
CLASSY algorithm may well provide a solution to
the fundamental problem of clustering-the deter-
mination of the inherent number of classes in the
data.
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• Appendix

The equation used to obtain iterative estimates of But
the a priori class probabilities or'proportions, aj, is
derived beginning with equation (9), which is reo
peated here in a slightly more expanded form.

(AI)

m •
P1 :: tll'a + L al'jk

I-I
1#-1

= ·/'ll + (1 - ai) Qi1c (A4)

o. otherwise

where

Since Qj does not depend on k, aj may be canceled
from both sides of the equation to obtain

. Here, define

(AS)

1 N PIJc
1 =-L-

N .tel P1
(A2) So,

-here, ror convenience, the functional notation has
been simplified.

Now,

•

•

(AJ)
(A6)
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(A7)
This is the iterative equation used to obtain propor-
tion estimates in CLASSY.

Equation (A 10) may also be put into a form il-
lustrating the nature of the update term to obtain

assuming a, .,. 1. Breaking this sum up into those
terms which are positive and those which are nega-
tive results in

(AS)

Now .•a/is reintroduced as follows:

+ 1
(1 - at)

(A9)

If we now solve for the a/s which are outside the
square brackets in terms of the a;'s. p;'s, and q;'s in-
side the square brackets. the following is obtained.

1: Pill - q;j;

'Il<qa PI

.----------

(All)

This equation illustrates that direct functional
iteration using equation (AID) amounts to adding a
correction term given by

to the old value of ajin order to o'>tain the new value
ora . -t

As a way of comparing the iterative equation for
proportion estimates used in CLASSY (eq. (AtO» to
the standard maximum likelihood iterative equation
(eq. (AI», one may rework the standard equation so
that the nature of the update term is apparent. Using
equation (A6), one obtains

(AI2a)

or

(A12b)

•

-.

•

(AIO) This equation reduces exactly to equation (At) .

•
688
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•

•

'. ,,

A comparison of cquations (A 11) and (A 12)
shows that the dirrerence is in the tcrm N versus

Thus, the iterative equation used in CLASSY (eq.
(All» will amplify the correction for Q, if there are a

significant number of points such that 0 < P,4 < I
and 0 < q, < 1. This corrc'iponds to the case where
cluster; is a "mi:\cd" c1w,tcr; that is. then: i'i a signifi-
cant amount of o'•.crl;.Jpbetween cluster i and other
clusters. Since it is precisely these "mixcd" clusters
for which the standard iterative equation (cq. (A 1)
or (AI2» converges slowly, the iterative cquation
used for proportions in CLASSY (eq. (AIO) or
(All» should converge more readily.
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